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Abstract. While ensemble systems and late fusion mechanisms have
proven their effectiveness by achieving state-of-the-art results in various
computer vision tasks, current approaches are not exploiting the power
of deep neural networks as their primary ensembling algorithm, but only
as inducers, i.e., systems that are used as inputs for the primary ensem-
bling algorithm. In this paper, we propose several deep neural network
architectures as ensembling algorithms with various network configura-
tions that use dense and attention layers, an input pre-processing algo-
rithm, and a new type of deep neural network layer denoted the Cross-
Space-Fusion layer, that further improves the overall results. Experimen-
tal validation is carried out on several data sets from various domains
(emotional content classification, medical data captioning) and under
various evaluation conditions (two-class regression, binary classification,
and multi-label classification), proving the efficiency of DeepFusion.
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1 Introduction

Ensemble systems have demonstrated to be effective models for solving a large
variety of problems in several domains, including image [14] and video [28] classi-
fication, speech recognition [6], and broader data stream processing [11] to name
but a few. Ensemble learning is a universal term for methods that employ a
pool of inducers to generate predictions, typically in supervised machine learn-
ing tasks. Despite the current advances in knowledge discovery, single learners
did not obtain satisfactory performances when dealing with complex data, such
as class imbalance, high-dimensionality, concept drift, noisy data, etc. In this
context, ensemble learning tries to fill this gap by obtaining a strong learner
based on the experience of the myriad of classifiers it incorporates. Selecting an
appropriate set of inducers according to the classification problem for obtain-
ing an accurate ensemble is still an open research problem [24, 11]. As ensemble
accuracy is governed by the law of large numbers, one must consider the rela-
tionships between accuracy and diversity of the inducers within an ensemble.
Here, diversity refers to the capability of the inducers of responding differently
to the same input. This paradigm is supported by the no-free-lunch theorem
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formulated by Wolpert [26]. Concretely, given a learning task, where N induc-
ers are independently trained on a specific data set, it is improbable that the
errors from these N individual learners are completely uncorrelated. However,
it is more probable that the ensemble accuracy can surpass the average accu-
racy of its members if they promote high diversity in predictions. Finding the
optimal accuracy-diversity trade-off has been actively studied [19], showing that
ensemble error decreases as base model error decreases and diversity increases.
Nevertheless, the pioneering work in [17] shows that the relationships between
accuracy and diversity of the members in an ensemble are more complex, and
it is not guaranteed that enhancing ensemble diversity improves the predictive
results. This raises an essential technical research question: How to create high
accuracy ensembles to account for all the aforementioned factors? To answer this
question, we aim to model the bias learned by each classifier in the ensemble set-
ting and the correlations between the biases via a consensus learning method,
to perform retrieval robustly, and improve the performance of the inducers.

Several methods have been used in the literature, starting from AdaBoost [8]
with it’s variants, e.g., soft margin AdaBoost [22] and Gradient boosting ma-
chines [10] with improved iterations as XGBoost [4], to Bagging [2] and Random
Forests [3]. Despite the success of DNNs in recent years, there is currently little
literature on the integration of ensemble learning in deep neural networks. Re-
cent works use ensembles to boost over features [7], where deep neural networks
are trained, in an entangled setting, stacking diverse data representations. To
the extent of our knowledge, DNNs have not been explored as ensembling learn-
ers, where the input is represented by the prediction of a plethora of classifiers.
One of the reasons is that the popular CNN layers are designed to learn patterns
based on how the data is organized in space, whereas in ensembles the pixels are
substituted with predictions of different classifiers that are not correlated.

In this context, the contribution of this work is 5-fold: (i) we introduce a
set of novel ensembling techniques that use deep neural networks; (ii) we fur-
ther enhance the performance of our deep ensembling methods by adding at-
tention layers to the networks, with the particular role of filtering the input
created by the inducer systems; (iii) we introduce a novel input pre-processing
method, that groups the data according to the overall correlation between induc-
ers, allowing for a better analysis of the input and for the introduction of more
complex processing layers; (iv) we introduce a novel deep learning layer, called
Cross-Space-Fusion layer that optimally utilizes the new pre-processed data and
further enhances the results of the deep ensembling methods; (v) the proposed
approaches are not dependent on a particular category of learning tasks or data.
Evaluation is carried out on a set of diverse tasks, targeting several types of
machine learning problems: two-class regression, binary classification, and multi-
label classification. We achieve state-of-the-art performance compared to other
traditional ensembling techniques and best performers from the literature. To
allow reproducibility, we publish the code on GitHub1. The code is developed in
Python 3 and is tested on the Keras 2.2.4 and Tensorflow 1.12 libraries.

1 https://github.com/cmihaigabriel/DeepFusionSystem v2
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2 Proposed method

For a standard ensembling system, given a set S of M samples and a set F
of N classifier or regression inducer algorithms, each algorithm will produce an
output for every given sample yi,j , i ∈ [1, N ], j ∈ [1,M ], as follows:


S =

[
s1 s2 ... sM

]
F =

[
f1 f2 ... fN

] ⇒ Y =


y1,1 . . . y1,M
. . .
. . .

yN,1 . . . yN,M

 (1)

Ensembling systems involve the creation of a new aggregation algorithm E,
that can detect and learn patterns in a training set composed of image or video
samples, inducers, and their outputs, and apply those patterns on a validation
set to produce a new output for every sample, ei, that is a better prediction of
the ground truth values of the validation set. Furthermore, a generalized ensem-
bling system must take into account the type of output required by the studied
problem. Therefore, while in binary classification tasks, the output values are
ei ∈ {0, 1} and in regression tasks the values are ei ∈ [0, 1] or [−1, 1], for multi-
label prediction, ei is actually represented by a vector of values for each of the L
labels assigned to the dataset. With this in mind, we propose the DeepFusion ap-
proach – to deploy several DNN architectures that take as input a set of inducer
predictions and produce new outputs e for the given samples. Our assumption
is that deep architectures will be able to learn the biases of different inducers,
no matter how high or low their performance is. We therefore propose three
different types of network architectures: dense networks (Section 2.1), attention
augmented dense architectures (Section 2.2) and finally, dense architectures aug-
mented with a novel type of layer, called Cross-Space-Fusion layer (Section 2.3).

2.1 Dense networks

Given their ability to classify input data into output labels correctly, dense layers
have represented an integral part of deep neural networks in many domains. In
our particular case, we use a set of dense layers for combining the inputs of all
inducers and, in the training phase, learn the biases of the inducer systems and
adapt the internal parameters of the dense layers in a manner that will allow
the prediction of validation data. Considering that dense layers need no special
assumption with regards to the nature of the input, we believe using them is also
useful for creating a domain-independent ensembling system. Figure 1 presents
the diagram of the dense network approach.

To optimize the results of our dense networks, we start by building a system
that searches for the best parameters of these networks. We accomplish this
by varying several parameters of the dense network: (i) the optimum width by
testing the following number of neurons per layer: {25, 50, 500, 1000, 2000,
5000}; (ii) the depth of the network by changing the number of dense layers,
testing the following values: {5, 10, 15, 20, 25}; (iii) adding or removing batch
normalization layers between the dense layers. We validate these architectures
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in our experiments and change these parameters until the best architecture with
regards to prediction capabilities is detected.

...

Input Dense

... ... ...

Output

B.N.

Fig. 1: DeepFusion dense network architecture (DF-Dense): variable number of
layers, number of neurons per layer and the presence or absence of BN layers.

2.2 Dense networks with Attention layers

While in the previous step we try to discover the best dense network, in this
section we focus on boosting the predictive power of our approach by inserting
soft-attention estimators after the last dense layer in the structure. Our intuition
is that such mechanisms will learn to attend to specific informative features, by
unveiling the relationships between individual classifiers. We denote the input
vector as xi, the soft attention vector as ai with a ∈ [0, 1], the learned attention
mask âi is then computed by element-wise multiplication of input vector and the
attention mask: âi = ai�xi. Finally, the attention mask is learned in a supervised
fashion with back-propagation. The pipeline of our proposed approach called
DF-Attn is depicted in Figure 2.

...

Input

Dense Architecture

Attention

Output

Fig. 2: DF-Attn architecture: attention masks automatically discover mutually
complementary individual classifiers and disable the counterproductive ones.

2.3 Dense networks with Cross-Space-Fusion layers

The final architecture augmentation is represented by a novel type of layer, the
Cross-Space-Fusion (CSF ) layer, that can exploit spatial correlations, and sev-
eral input pre-processing (decoration) techniques that allow the implementation



DeepFusion: Deep Ensembles for Domain Independent System Fusion 5

of the CSF layer. While the introduction of convolutional layers has greatly im-
proved the performance of deep neural networks [16] by allowing the spatial
processing of data, several aspects hinder the use of such layers. First of all,
given the input matrix Y , with the shape presented in Equation 1, there is no
intrinsic spatial information associated with such an input; therefore, some input
decoration techniques should be used to generate these spatial correlations.

To generate spatial information, we choose to pre-process the input data
and decorate each element with output scores and data from the most similar
inducers. Given an image or video sample si, i ∈ [1,M ], each of the N inducer
algorithms will produce a set of scores, Yi =

[
y1,i y2,i ... yN,i

]
, and, as mentioned

before, this kind of input has no intrinsic spatial correlation associated with it.
In the first step of the input decoration technique, we analyze the correlation
between the individual inducers fi, i ∈ [1, N ]. This correlation can be determined
by any standard method, such as Pearson’s correlation score, but, to ensure
an optimized learning process we will use the same metric as the task we are
processing. Given any fi, i ∈ [1, N ] inducer system, that produces the vector
f̄i =

[
f̄1 f̄2 ... ¯fM

]
of outputs across the entire set of samples, and a vector of

correlation scores cri =
[
cr1,i cr2,i ... crN−1,i

]
between this inducer and all the

other inducers can be generated. We then create the following structures:

Ci,j =

c1,i,j c2,i,j c3,i,jc8,i,j si,j c4,i,j
c7,i,j c6,i,j c5,i,j

 , Ri,j =

r1,i,j r2,i,j r3,i,jr8,i,j 1 r4,i,j
r7,i,j r6,i,j r5,i,j

 (2)

In this example, each element si,j , representing the prediction produced by
inducer i for sample j, is decorated with scores from the similar systems, c1,i,j
representing the most similar system, c2,i,j representing the second most similar
system and so on. For the second dimension of our new matrix we input the
correlation scores for the most similar system (r1,i,j), the second most similar
(r2,i,j) and so on, with the value 1 as centroid, corresponding to the initial si,j
element. Finally, the new input of our deep ensembling models is represented
by a 3-dimensional matrix, composed of M ×N Ci,j-type 3 × 3 bi-dimensional
elements and the same number of Ri,j-type 3 × 3 bi-dimensional elements. We
denote the entire input matrix, composed of these structures with Iproc and its
size is (3 × N, 3 ×M, 2). After pre-processing the input Iproc, it is fed into the
CSF layer. For each group of centroids (Ci, Ri), the neural network learns a set
of parameters αk,i and βk,i that will process each sample as following, therefore
combining the elements in each centroid:

α1,i∗si+β1,i∗c1,i∗r1,i
2

α2,i∗si+β2,i∗c2,i∗r2,i
2

α3,i∗si+β3,i∗c3,i∗r3,i
2

α8,i∗si+β8,i∗c8,i∗r8,i
2 si

α4,i∗si+β4,i∗c4,i∗r4,i
2

α7,i∗si+β7,i∗c7,i∗r7,i
2

α6,i∗si+β6,i∗c6,i∗r6,i
2

α5,i∗si+β5,i∗c7,i∗r5,i
2

 (3)

The number of parameters used by the CSF layer per centroid pair is 16, thus
generating 16×M parameters that are trained, where M is the total number of
inducers. The output of the CSF layer is finally processed by Average Pooling
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layers, thus generating a single value for each (Ci, Ri) centroid group and, thus,
outputting the same sized matrix as the input before the pre-processing step. We
test two setups with regard to data processing. In the first setup, denoted 8S,
all the 8-most similar inducer values are populated in Iproc, while in the second
setup, denoted 4S, only the 4-most similar ones are populated. A diagram of the
Cross-Space-Fusion architecture is presented in Figure 3.

...

Input

...

Decorated Input CSF AvgPool

Dense Architecture
Output

...

Fig. 3: Cross-Space-Fusion augmented architecture: initial pre-processing steps
and the architecture of the entire network (DF-CSF).

3 Experimental setup

3.1 Training protocol

To perform the ensembling of the systems we search for the best performing
dense architecture by using the setup presented in Section 2.1. Results are tested
against the validation set, and the best performing dense architecture is then
augmented with attention layers in the third step and with Cross-Space-Fusion
layers in the fourth step. The input is modified for the use of the CSF layers,
as described in Section 2.3. As presented in Section 2.3, the CSF layers are
applied directly to the dense architecture, and not to its attention augmented
variant. For each network, training is performed for 50 epochs, with a batch size
of 64, and mean squared error loss for the regression experiments and binary
crossentropy for the classification and labeling experiments. We use an Adam
optimizer [12], with an initial learning rate of 0.01.

3.2 Data sets

We empirically verify the performance of our approaches, by conducting the
experiments on two data sets, namely: the Emotional Impact of Movies [5], and
the ImageCLEFmed Concept Detection [20]. These data were validated during
the yearly MediaEval2 and ImageCLEF3 benchmark initiatives, for multimedia
evaluation, and cross-language annotation and retrieval of images, respectively.

2 http://www.multimediaeval.org/
3 https://www.imageclef.org/
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The MediaEval 2018 Emotional Impact of Movies [5] is a data set for auto-
matic recognition of emotion in videos, in terms of valence, arousal, and fear.
Out this regard, the data set offers annotations for two tasks, namely (i) va-
lence and arousal prediction (denoted Arousal-Valence), a two-class regression
task, consisting of 54 training/validation movies with a total duration of approx.
27 hours, and 12 testing movies with a total duration of approx. 9 hours, and
(ii) fear detection (denoted Fear), a binary classification task, consisting of 44
training/validation movies, with a total duration of more than 15 hours, and
12 testing movies with a total duration of approx. 9 hours. We considered all
the systems participating in the benchmarking campaign, namely 30 systems for
the valence and arousal prediction task, and 18 systems for the fear detection
task. Inducers ranged from linear SVR/SVM, clustering, multi-layer perceptron,
to bidirectional LSTMs, temporal convolutional networks, and ensembles. For a
detailed description, the reader may access the participants working notes here4.

The ImageCLEFmed 2019 Concept Detection (denoted Caption) is a multi-
label classification image captioning and scene understanding data set [20] con-
sisting of 56,629 training, 14,157 validation, and 10,000 test radiology examples
with multiple classes (medical concepts) associated with each image, extracted
from the PMC Open Access [23] and Radiology Objects in COntext [21]. In
total, there are 5,528 unique concepts, whereas the distribution limits per im-
ages in the training, validation, and test sets is between 1-72, 1-77, and 1-34
concepts, respectively. We have considered all the systems participating in the
benchmarking campaign, namely 58 systems with inducers ranging from cluster-
ing, logistic regression, to ResNet-101, LSTM, CheXNet and ensembles. For a
detailed description, the reader may access the participants working notes here5.

3.3 Evaluation

Ensemble accuracy is governed by the law of large numbers, typically requiring
tens of systems to provide learning guarantees and significantly boost the perfor-
mance. However, they are not used in practice, as it is impossible to implement
or retrieve so many systems from the authors, or even to re-run them in identi-
cal conditions. In addition, there is no general criterion or best practices in this
respect in the literature. In this context, current approaches use a limited num-
ber of inducers, e.g., less than 10 [18], which most likely are not representative
for a full-scale experiment. To overcome this issue, we have incorporated all the
systems developed and submitted in the respective benchmarking competitions
and performed all the experiments solely on the test data, as provided by the
task organizers, in a repeated k-fold cross validation manner. In this regard,
the split samples are randomized, and 100 partitions are generated to assure a
thorough coverage of the data, using two protocols: (i) 75% training and 25%
testing (KF75), and (ii) 50% training and 50% testing (KF50).

4 http://ceur-ws.org/Vol-2283/
5 http://ceur-ws.org/Vol-2380/
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Performance evaluation is carried out via the official metrics released by the
authors of the data, namely: (i) for the MediaEval 2018 Emotional Impact of
Movies data set, we use the Mean Square Error (MSE) and the Pearson’s Corre-
lation Coefficient (PCC) for the valence and arousal prediction task, with MSE
being the primary metric, and Intersection over Union (IoU) of time intervals,
for the fear detection task, and (ii) for the ImageCLEFmed 2019 Concept De-
tection, the F1-scores computed per image and averaged across all test images.
The metrics are computed as average values over all the partitions.

4 Results and discussion

This section presents and analyzes the results of the proposed DeepFusion meth-
ods (Section 2) with regards to the three tasks described in Section 3.2. We use
the best-performing systems submitted at their respective benchmarking compe-
titions as baselines for comparing our methods, and these methods also represent
the best performing inducer systems for our DeepFusion approach.

For the Arousal-Valence data, the best performing method is developed by
Sun et al. [25], using a traditional late fusion approach, with results of MSE =
0.1334 and PCC = 0.3358 for arousal and MSE = 0.0837 and PCC = 0.3047
for valence. For the Fear data, the best performing system is developed by Yi et
al. [27], using a series of convolutional networks, and achieving a IoU result of
0.1575. Finally, for the Caption data, the best results are achieved by Kougia et
al. [15], with a deep learning system that achieves an F1 score of 0.2823.

Another group of baseline methods is represented by classical ensembling
approaches. We test several traditional late fusion strategies such as: weighted
fusion (denoted LFweight), based on the ranking of individual inducers, taking
the maximum inducer score value (LFmax) and taking the average and median
values of inducer scores (LFavg, LFmed) for the regression tasks, and max voting
(LFvote) for the classification tasks [13]. Furthermore, we also add two boosting
mechanisms: AdaBoost [9] (BoostAda) and Gradient Boosting [10] (BoostGrad).
For these traditional late fusion approaches we choose inducer combinations that
maximize their performance.

4.1 Ablation studies

Network size heavily influences the performance of the network. In cases when
the network is too large, due to a lack of sufficient training samples or due to
low dimensionality of the inputs, the network can encounter problems such as
the exploding gradient problem [1]. Figure 4 presents such a case, studied on
the Arousal-Valence data. The arousal and valence graphs represent a network
setup of 5 dense layers and a variation of network width. It is interesting to
observe that, for numbers of neurons that surpass 1,000, the network is not able
to learn the inducer biases, and the MSE results are lower than the state-of-
the-art (SOA) results. Furthermore, in those particular cases, the value of the
PCC metric approaches 0, denoting that perhaps the network outputs values
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close to neutral for the validation samples [5]. Also, the addition of BN layers
contributed to the performance of the arousal detection network, allowing for a
transition to a larger network, from 50 neurons/layer, to 500.
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0.10

0.12

0.14

0.16

25 50 500 1,000 2,000 5,000

M
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E

Number of neurons / layer

Arousal
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0.08

0.10

0.12

0.14

0.16
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S
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KF75, noBN KF50, noBN KF75, BN KF50, BN

Fig. 4: Ablation study with regards to the influence of network depth and batch
normalization layers, on the Arousal-Valence data.

Finally, it is worth noting that, for the DF-CSF architecture, there are dif-
ferences with regards to the optimal input decoration mechanism. While for the
regression data, Arousal-Valence, the best performing decoration scheme uses
only 4 similar systems for decorating each input sample (4S), for the classifica-
tion and multi-labeling data, Fear and Caption, the best performances for the
DF-CSF architectures uses all the 8 most similar systems in decorating the input
samples (8S). The difference in results is most evident for the Fear data, where
the DF-CSF-8S architecture has an IoU result of 0.2242, while the DF-CSF-4S
architecture has a result of 0.2173. The difference between the optimal approach
with regards to the decoration mechanism proves that for different approaches
and tasks, different decoration mechanisms must be employed and that newer
variations of our mechanism may provide even better results.

4.2 Results

The results of our proposed DeepFusion architectures are presented in Table 1.
As expected, training on a KF75 split produces better results than KF50, but in
both scenarios the results clearly surpass the state-of-the-art and the traditional
late fusion approaches. It is important to note that the results for the traditional
late fusion approaches did not improve state-of-the-art results by a large margin,
and in some cases, performed worse than the SOA systems. Overall the best
performing architecture is represented by the CSF layer augmented networks.

For the Arousal-Valence data, the best performing DF-Dense architecture is
composed, for both arousal and valence, of a 5 layer network, with each layer hav-
ing 500 neurons and uses batch normalization layers between the dense layers.
Even though the state-of-the-art results were high with regards to MSE [25],



10 M.G. Constantin et al.

Table 1: Results for the three datasets: Arousal-Valence, with MSE and PCC
metrics, Fear, with IoU metric and Caption, with F1-score metric. For reference,
we present the best performing state-of-the-art systems [25, 27, 15] (SOA) and
the traditional late fusion mechanisms. We present the best performing dense
(DF-Dense), attention (DF-Attn) and Cross-Space-Fusion (DF-CSF) architec-
tures. The best results for each type of data split are presented (KF75 and
KF50), including the original (orig.) split for the SOA systems and the best
performing overall architectures for each split are presented in bold.

System Split
Arousal
(MSE)

Arousal
(PCC)

Valence
(MSE)

Valence
(PCC)

Fear
(IoU)

Caption
(F1)

SOA orig 0.1334 0.3358 0.0837 0.3047 0.1575 0.2823

LFweight orig 0.1297 0.2819 0.0831 0.3011 - -
LFmax orig 0.1374 0.3135 0.0851 0.2563 - -
LFavg orig 0.1316 0.3347 0.0821 0.2916 - -
LFmed orig 0.1310 0.3340 0.0820 0.2902 - -
LFvote orig - - - - 0.1381 0.2511

BoostAda KF75 0.1253 0.3828 0.0783 0.4174 0.1733 0.2846
BoostGrad KF75 0.1282 0.3911 0.0769 0.3972 0.1621 0.2834

DF-Dense
KF75 0.0549 0.8315 0.0626 0.8101 0.2129 0.3740
KF50 0.0571 0.8018 0.0640 0.7876 0.1938 0.3462

DF-Attn
KF75 0.0548 0.8339 0.0626 0.8107 0.2140 0.3659
KF50 0.0568 0.8036 0.0640 0.7888 0.1913 0.3522

DF-CSF
KF75 0.0543 0.8422 0.0625 0.8123 0.2242 0.3912
KF50 0.0568 0.8073 0.0637 0.7903 0.2091 0.3610

0.1334 for arousal and 0.0837 for valence, our DF-Dense systems managed to
improve those results, reaching to 0.0549 and 0.0626. Both the DF-Attn and
DF-CSF networks further improved these results, with the CSF network being
the best overall performer; however, the difference in results to DF-Dense was
not very substantial. Another interesting analysis can be performed on the PCC
results. Here, our proposed networks significantly improve the results, indicat-
ing a better understanding of borderline cases, as theorized in the competition
overview paper [5]. The state-of-the-art results are improved to a maximum of
0.8422 for arousal and 0.8123 for valence by the DF-CSF network. Regarding
the DF-CSF network, the architecture performed best with the 4S setup.

For the Fear data, the optimal DF-Dense configuration is composed of a 10
layer network, with each layer having 500 neurons, and no batch normalization
layers. This configuration achieves a final score of 0.2129, increasing the state-
of-the-art result by 35.17%. Furthermore, both the DF-Attn and the DF-CSF
configurations increase this score, with a maximum IoU of 0.2242, representing
a 42.35% increase over the original performance, for an 8S setup of DF-CSF.

Finally, for the Caption data, the best performing DF-Dense configuration
is represented by a 5 layer network, with 500 neurons per layer and no batch
normalization. This configuration achieves an F1-score of 0.3740, increasing the
state-of-the-art results by 32.48%. Interestingly, for the KF75 split, the DF-Attn
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network does not perform better than the DF-Dense network. However, similar
to the other datasets, the best performing system is the DF-CSF, with an F1-
score of 0.3912, under the 8S setup.

5 Conclusions and future work

In this paper, we present a set of novel ensembling techniques, that use DNN ar-
chitectures as the primary ensembling learner. Our architectures integrate dense
and attention layers, but also a novel input decoration technique, that creates
spatial information out of inducer outputs and a novel deep neural network layer,
the Cross-Space-Fusion layer, that is able to manipulate the newly created spatial
information. We evaluate our approaches on three tasks from diverse domains
(emotional content processing and medical image captioning) and with diverse
problem formulations (two-class regression, binary classification, and multi-label
classification). We validate our results by comparing them with the current state
of the art on the three tasks and with traditional ensembling approaches. Re-
sults show significant improvements, by a margin of at least 38.58%, therefore
validating our DeepFusion methods and techniques.

Given the encouraging results presented in this paper, future developments of
our methods may prove useful for solving even more tasks under different prob-
lem formulations. Considering the usefulness of our input decoration method,
some further work towards improving the results may include incorporating a
larger set of decoration methods, or adding both similar and dissimilar inducers
in the decoration scheme. We also believe that further work on the Cross-Space-
Fusion layer may provide even better results.
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