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Abstract In the context of the ever growing quantity of multimedia content from
social, news and educational platforms, generating meaningful recommendations and
ratings now requires a more advanced understanding of their impact on the user, such
as their subjective perception. One of the important subjective concepts explored by
researchers is visual interestingness. While several definitions of this concept are
given in the current literature, in a broader sense, this property attempts to measure
the ability of audio-visual data to capture and keep the viewer’s attention for longer
periods of time. While many computer vision and machine learning methods have
been tested for predicting media interestingness, overall, due to the heavily subjective
nature of interestingness, the precision of the results is relatively low. In this chapter,
we investigate several methods that address this problem from a different angle. We
first review the literature on interestingness prediction and present an overview of
the traditional fusion mechanisms, such as statistical fusion, weighted approaches,
boosting, random forests or randomized trees. Further, we explore the possibility of
employing a stronger, novel deep learning-based, system fusion for enhancing the
performance. We investigate several types of deep networks for creating the fusion
systems, including dense, attention, convolutional and cross-space-fusion networks,
while also proposing some input decoration methods that help these networks achieve
optimal performance. We present the results, as well as an analysis of the correlation
between network structure and overall system performance. Experimental validation
is carried out on a publicly available data set and on the systems benchmarked during
the 2017 MediaEval Predicting Media Interestingness task.
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1 Introduction

Given the prevalence of multimedia data associated with the current online envi-
ronment and the immense quantity of data uploaded by both amateur and profes-
sional content creators, the need for in-depth understanding of the uploaded data has
emerged. Automatic classification and recommendation systems are needed in order
to help users navigate online platforms that are able to correctly understand both
user preferences and the quality of the multimedia content hosted on the platforms.
The research and development communities are currently giving increasing attention
to the study of subjective content properties, therefore seeking to understand how
visual content affects viewers and tune their algorithms accordingly. This represents
a shift in research focus from previous directions, such as understanding the content
of images and videos via objective properties such as object detection [1] and scene
classification [2].

Visual interestingness represents one of the most popular concepts currently
being studied, being defined as the capacity of “holding or catching attention” in
the Oxford Dictionary of English [3]. Berlyne’s initial studies in psychology [4]
show that interest heavily influences human behaviour and motivation, while more
recent works that study the interestingness of images [5] show that interest and
the willingness to view and study a media sample are positively correlated. Many
researchers also point out the importance of other factors in creating and maintaining
interest [6, 9], like novelty, coping potential, arousal and aesthetic quality. From an
emotional perspective, Silvia [6, 7] includes interest among the class of emotions
that relate to comprehension, exploration and learning. In this context, it is easy to
understand why researchers and developers are starting to focus their efforts on the
prediction of multimedia interestingness. An interestingness value assigned to each
media item can represent the difference between a video being recommended to
users if it fits their viewing profile and being forgotten, and the accurate assessment
of this subjective concept can generate more user engagement and satisfaction.
On the other hand, it would represent an useful tool for content creators, be they
online creators, professors selecting their media samples for classes or advertising
agencies, as it could select the most appropriate media samples for distribution out
of a large collection of images and videos. Finally, it is important to note that in
the current literature the notion of “interestingness” is used to describe two different
concepts: social interestingness which is usually related to social media concepts like
popularity and virality, and visual interestingness which is defined as the capacity of
media samples to attract and maintain viewer attention. Previous work in this domain
have shown these concepts to be both positively [10] and negatively [11] correlated,
therefore the link between the concepts is still an opened research direction. However,
throughout the rest of this chapter, we will use “interestingness” as a synonym for
visual interestingness.

In this chapter we explore the possibility of employing a set of ensembling
methods for interestingness prediction, by implementing deep neural networks as the
primary ensembling function. To the best of our knowledge, this type of approach
presents a high degree of novelty, as deep neural networks are used as inducers in the



Exploring Deep Fusion Ensembling for Automatic Visual Interestingness Prediction 3

current state-of-the-art literature, not as the primary ensemble function. Our approach
consists of several architectures that include dense, attention, convolutional and the
novel cross-space-fusion layers, as well as two input decoration methods that help
analyze correlations between similar inducers. Our methods are tested on the publicly
available Interestingness10k dataset [19], validated during the 2017 MediaEval!
Predicting Media Interestingness task [13]. With regards to media interestingness, [8]
represents an in-depth literature review of interestingness and covariate concepts,
analyzing these concepts and their correlations from psychological, user-centric
and computer vision perspectives, while [19] represents a review of the MediaEval
Predicting Media Interestingness task, analyzing the best practices, methods, user
annotation statistics and the data itself. From an ensembling perspective, three papers
introduce some of the deep neural network architectures that we will deploy in this
work: [30, 19, 31]. The code corresponding to the proposed methods we will present
is available online?, developed in Python 3 using the Keras 2.2.4 and Tensorflow
1.12 libraries.

The rest of this chapter is organized as follows. Section 2 analyzes the current state-
of-the-art, with regards to both interestingness prediction and late fusion systems. In
Section 3 we present the methods we propose for media interestingness prediction.
Section 4 presents the results and their analysis, pointing out trends and general
suggestions with regards to system performance. Finally, Section 5 concludes the
paper and discusses future developments.

2 Previous Work

This section discusses and analyzes the current state-of-the-art with regards to two
main topics: the advances in the prediction and classification of media interestingness
and the most important late fusion methods currently used in the literature, while
also presenting some arguments that advocate the deployment of late fusion schemes
for interestingness prediction.

2.1 Media Interestingness

From a computer vision perspective, media interestingness prediction, usually re-
ferring to prediction in image or video samples, is gaining considerable traction in
the community, with a significant increase in the number of papers published on
this subject in recent years [19]. However, this is still considered an opened research
direction, as methods that improve results are constantly being published. One of the
main difficulties in predicting interestingness comes from the subjectivity of interest

1 https://multimediaeval.github.io/
2 https://github.com/cmihaigabriel/DeepFusionSystem_v2
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among human annotators. Consequently, lower annotator agreement and a lesser de-
gree of separation between interesting and non-interesting samples may be expected
when designing a media interestingness dataset or computer vision methods that
tackle this issue. Several methods of measuring interest in humans have been used.
For example, for the Interestingness10k [19] dataset, annotators are shown pairs of
images or videos and are asked to select which of the two samples are more interest-
ing for them, and asked to also consider that “the selected video excerpts/key-frames
should be suitable in terms of helping a user to make his/her decision about whether
he/she is interested in watching a movie” [52].

Early works in interestingness prediction employ several types of traditional vi-
sual features. Gygli et al. [20] use novelty, aesthetics and general preference as
cues for image interestingness. Novelty is encoded with the help of a Local Out-
lier Factor approach, aesthetics via a set of descriptors that encode colorfulness,
arousal, complexity, contrast and edge distribution, and general preference is com-
puted by analyzing raw RGB (Red-Green-Blue color space) values, SIFT [47] and
GIST [48] features and color histograms. For the prediction of video interesting-
ness Jiang et al. [21] use visual, audio and high-level attributes in a Ranking-SVM
(Support-Vector Machine) approach. The authors show that the multi-modal fusion
of audio and visual features, consisting of color histograms, SIFT, GIST, MFCC [49],
Self-Similarities [50], and Spectrogram SIFT [51], obtains the best result, with a pre-
diction accuracy of 71.4%. Similar methods, that calculate different concepts with
the help of traditional descriptors are also used by Grabner et al. [22]. The per-
formance of Sentiment features [23] and C3D models [24] are compared by Gygli
and Soleimani [10], and, interestingly sentiment features achieve better results, with
a Spearman’s correlation rank of p = 0.53. Another interesting conclusion comes
from Fan et al. [25], showing that the fusion of several sources of data improves
system performance.

While these studies present interesting approaches, it is difficult to compare
them and propose a set of ideas that would increase the chances for a good perfor-
mance, given their use of different datasets, splits and development conditions. In
this context, the MediaEval 2016 and 2017 Predicting Media Interestingness compe-
titions [12, 13] address this problem, by creating a common evaluation framework,
consisting of a dataset of images and videos with human-annotated interestingness
values, common splits and evaluation metrics for the participating teams and open
availability for the data. A large number of systems were submitted to the two edi-
tions of the benchmarking competition, 60 systems for the image tasks and 69 for the
video tasks, but also outside of the competition, in state-of-the-art papers, 17 image
processing systems and 46 video processing systems [19]. While there are many
diverse approaches, one noteworthy aspect is that the top results for both tasks can
be considered rather low, especially when compared with other more traditional and
objective tasks such as object detection or scene classification. For example, the best
results achieved during the benchmarking competitions with regards to the official
metric, Mean Average Precision (MAP), are MAP = 0.3075 in the image prediction
task, by Permadi et al. [26], and MAP = 0.2094 in the video prediction task, by
Ben-Ahmed et al. [27]. These results are further improved outside of the competi-
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tion, Parekh et al. [28] obtaining a result of M AP = 0.3125 for the image task and
Wang et al. [29] obtaining a M AP = 0.2228. However, a study on the annotation
process published by Constantin et al. [19] shows that human annotators also do not
achieve near-perfect scores, considering that the best performing annotators never
scored above M AP = 0.7. This further enforces the idea that the subjectivity of such
a task represents one of its main challenges. While the approaches are diverse and
a large number of systems are used for image and video predictions in the context
of the MediaEval competition, one of the noticeable trends is that many of the top
performing systems use some sort of fusion scheme. In general fusion is defined
as “a technology to enable combining information from several sources in order to
form a unified picture” [53], therefore it involves combining the power of multiple
detection systems in order to create a better final system. For the methods analyzed
in this context, fusion is applied at feature level (also called early fusion), at decision
level (also called late fusion or ensemble learning) or a combination of the two.

2.2 Ensembling Systems

Late fusion, also knows as ensembling systems or decision-level fusion, consist of
a set of initial predictors, called inducers, that are trained and tested on the dataset,
whose prediction outputs are combined in the final step in order to create a new and
improved set of predictions. These systems have a long history and are shown to be
particularly useful in scenarios where the perfomance of single-system approaches is
not considered satisfactory. While their usefulness is proven even in some traditional
tasks, such as video action recognition [32], recently there is a noticeable trend
of employing such approaches in subjective tasks, that seek to analyze the human
perception of multimedia data. Some examples for this trend would include the
prediction of media memorability [33], violence detection in videos [34], emotional
content analysis [35], and media interestingness prediction [29].

One important theoretical aspect of ensembling systems is formulated by
Wolpert [36], stating that, given an ensemble of N inducers, trained in a similar
way, it is improbable that the prediction outputs of these inducers are completely un-
correlated. Thus, promoting a high level of diversity in the inducer set may improve
the final result of the ensemble. Recently, Liu et al. [37] show that ensemble error
may decrease as the inducer error decreases and inducer diversity increases. These
aspects and many more are analyzed in depth in several ensembling literature review
papers [39, 38].

Regarding the ensembling functions, the methods that are used in combining
inducer prediction outputs, while there is a high variety among them, deep neural
networks still represent a novelty for this domain. To the best of our knowledge, our
works in using deep neural networks as the primary ensembling function is one of
the first attempts in this direction. So far ensembling functions are dominated by
simple statistical methods [46], such as late fusion via weighted arithmetic mean
calculation, voting systems, etc. Other more complex approaches employ methods
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that require an initial learning step, including Boosting approaches such as Ad-
aBoost [40], Gradient Boosting [41] or XGBoost [42], Bagging [43] or Random
Forests [44]. While these approaches have been successfully implemented in several
tasks, our assumption is that, with the introduction of deep neural networks as the
main ensembling function, late fusion results will significantly improve. In our work
we will use two approaches as comparison baseline for our proposed prediction
method, namely statistical methods and boosting.

One example of a statistical approach is the weighted late fusion. Under this
scheme, given a set of N inducer methods, A = [ay, as, ...,an ] that create a set of
prediction outputs denoted ¥ = [y1, y2, ..., yn |, the goal of a weighted late fusion
approach is to create a set of weights, W = [w1, wa, ..., wn |, that, once applied to the
prediction outputs Y, represent better predictors for the dataset that is being studied.
In other words, weighted late fusion creates a new prediction output denoted y,,,
that is calculated as follows:

yir-wirtyy-wat+...+yN " WN
N

Yw = ey
The goal of this approach is to minimize the prediction error €, so that the new
prediction output €,, < €;,i € [1, N]. Several types of strategies can be employed
in choosing the values of W. The most common strategy involves ordering the Y
vector according to inducer performance, i.e., €] < € < ... < €n. This would allow
systems to assign higher weights for better inducers, thus making sure that the top
performing inducers dictate the final result. Working under the assumption that the
vector is ordered, some such schemes would be:

wi=1i€[l,N]
{ wi=L,ie[0,N-1] )
wi=1- (e —e€1),i € [1,N]

Boosting approaches represent another important class of ensemble learning tech-
niques. In general, boosting can be defined as an iterative way of adding inducers
into a final ensemble system, while updating the weights assigned to each inducer as
more inducers are added in the system. While there are major differences between
different boosting approaches, such as AdaBoost and Gradient Boosting, the over-
arching idea is the sequential training of inducer weights, i.e., trying to adjust the
learning process so that it can correct preceding errors.

AdaBoost identifies weaknesses in the inducers in each learning step, represented
by miss-classified data points, and assigns higher internal weights for those points,
under the assumption that this will allow the next classifiers in the ensembling
scheme to correct these errors. Therefore, given a set of data points, x;,i € [1, M],
initially all the weights for these data points are set to w; = 1/M. The total error can
be calculated for each individual inducer a;, j € [1,N] as :

M .. . . .
err; = Y wi - I(C(x;) #yj.i) 3)

M
Z[:] Wi
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where 7 is a function that outputs 1 for a true positive or negative prediction and
0 for a false positive or negative one and C represents the new classification rule
created by the ensembling scheme. Also, given the a factor for each inducer, the
system will update the w; weights accordingly:

1 —err;
aj=In—— “)
errj
Wi =w; - e L (C(x)#yji) 5)

Thus, considering k as the set of the possible prediction classes associated with the
prediction task, the new output can be expressed as:

M
C(x) = max Z} a; 1 (yi(x) = k) (©)

Gradient boosting, on the other hand, does not focus on individual data points, but
on finding the difference between prediction sets and ground truth data. Therefore,
the goal of this method is the minimization of the loss function L(g,y), where y
represents the prediction output of the method, while g represents the ground truth
values for the given samples. Practically, the goal is to create a new ensembling
function F that best approximates the ground truth of the dataset:

N
F= mylnzll L(g,y) )

While going through consecutive calls of the training loop, gradient boosting meth-
ods seek to apply gradient descent for optimizing the ensembling result. The final
version of the ensembling function ' can therefore be expressed as a weighted sum
computed over a set of approximation functions A, starting from the initial version
Fy for this function:

M
F=Zw,~~hi+Fg (8)
i=1

where M represents the number of training steps. The function is then updated, based
on its previous values, as follows:

N
Wi = minZ L(g,w- hy) ®
w
i=1

Fon=Fp1+wy-hy (10)
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3 Deep Ensembling

In a general sense, ensembling systems are represented by an algorithm or function
¥, that, given a set of M dataset samples denoted S and a series of N algorithms
denoted A, uses the classification or regression outputs of all the N algorithms,
called inducers, and by combining them can create a new output for each of the
M samples. Individual elements of the sample set can be represented as s;,i €
[1, M], representing a vector S = [s1, 52, ..., Sp], While the series of algorithms
can be represented by a set of functions a;, j € [1, N], representing a vector A =
[ai,as,...,aN].

Therefore, a matrix Y (see Equation 11) that contains elements y; ;,i € [1,M]
and j € [1, N] can be constructed, containing the prediction outputs of each inducer
for each individual sample, where each row represents inducer outputs for a certain
sample.

yi,1r - .. YI,N

v=| . . . (11)

Ym,a...-YM,N

Obtaining the final ensembled prediction output for a single sample i consists
of using the [y 1,y 2, ..., yi,n] inducer output vector as inputs for the ensembling
function ¥, thus obtaining the final prediction value o;. This entire process is
presented in Figure 1. While some variants of the ensembling methods can be
represented by simple mathematical functions, i.e., calculating the average value of
the inducer output vector, other functions can be more complex and can require a
preliminary learning stage, such as boosting methods, as shown in Section 2.2. We
propose a different perspective in which the ensembling function is represented by
deep neural networks that will process inducer prediction output values.

It is also interesting to note that, while in more complex cases, such as multi-label
regression, the predictions created by the inducers do not represent a single value, as
one output probability is assigned to each of the possible labels, in our case inducers
output a single value, representing the degree of interestingness assigned to each
image or video sample. Therefore the y; ; values are uni-dimensional.

With this general framework in mind, we will present in the following sections
some new perspectives, consisting of several types of deep neural networks that are
used as ensembling functions for the task of predicting media interestingness. Our
assumption in this case is that DNNs are able to better understand the patterns and
biases that individual inducers have towards the samples in the dataset. Our proposed
DNN models will only use the inducer outputs in determining the final prediction
score, so image and video samples will not be fed into the ensemble algorithm.

We investigate four types of DNN architectures as follows: (i) a dense layer-based
approach, that is the augmented with (ii) attention layers, (iii) convolutional layers,
and finally, (iv) Cross-Space-Fusion layer (CSF), a novel approach designed for
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Fig. 1 General presentation of ensembling systems. The sample dataset, denoted S contains M
elements, the set of inducers A contains N elements, while the inducer outputs for the samples are
denoted as y; j,i € [1,M], j € [1, N]. The ensembling algorithm is denoted ¥ and it produces
a set of M prediction outputs, corresponding to each sample, denoted 0;,i € [1, M ]|. Samples are
represented with blue color, inducer algorithms with green, prediction outputs with yellow and the
ensembling function with red.

parsing inducer vectors. While the first two types of network do not need any special
data pre-processing, the latter two, namely convolutional and CSF, are designed to
process data based on the spatial arrangement of data and understand how adjacent
elements in a matrix can be interpreted in order to obtain a prediction. While this is
heavily exploited in images and videos by convolutional layers, inducer output vectors
have no intrinsic spatial arrangement and correlation, and therefore, some data pre-
processing and decoration schemes that create spatial information are necessary
for these two final types of neural networks, which we will present along with the
implementation of the respective DNN models. One of the main reasons we theorize
that such structures are able to create better ensembling systems is the ability of
neural networks to accurately use various types of input data and classify this data
into output predictions. While not directly attempting to model human behaviour
and understanding of visual interestingness, we believe these models are able to
model inducer behaviour and understanding, thus being able to learn the positive
and negative biases of inducers towards visual samples. Thus, while the approaches
presented here are centered around the prediction of visual interestingness, they are
domain-independent and are useful in other tasks as well [31].
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3.1 Dense Networks

Dense networks composed of fully connected (or dense) layers arguably represent
one of the most popular DNN implementations. Given the innate ability of dense
layers to correctly detect patterns in the input data and accurately classify samples,
we theorize that, by using a set of connected dense layers, our proposed method
will be able to accurately learn the correlation between inducer biases [14], allowing
combinations of inducers to support or dismiss their predictions, based on the patterns
the networks learns. Another component of the final network is represented by the
addition of batch normalization layers [15], between the individual dense layers,
with the role of helping the improving the network’s learning process and speeding
it up. Several variations of the dense network setup are tested, in order to ensure
optimal performance. We present the optimal network architecture search method
in Algorithm 1. We therefore change the depth of the network, by testing various
numbers of layers in the network (5, 10, 15, 20, 25) and the width of the network
by changing the number of neurons per layer (25, 50, 500, 1000, 2000). The third
parameter in this search algorithm is represented by the presence or absence of batch
normalization layers. Also, in Algorithm 1, the processDense function has the role
of both creating the network according to the three variable parameters and the role
of training and testing the created network. A schematic view of the dense network
architecture is presented in Figure 2.

. N -
[]

\
/ Output

[]

Input Dense B.N.

Fig. 2 A schematic presentation of the Dense architecture, presenting the variable width and depth
of the network, as well as the presence or absence of the batch normalization layers.

3.2 Attention Augmented Dense Networks

Though computational attention mechanisms [16] were initially predominantly used
in works that dealt with text processing and translation, it was quickly adopted in other
domains, including computer vision [17]. In a general sense, attention mechanisms
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Algorithm 1: Optimal dense network parameter search method.

Output : settings for optimal Dense network best_neuron, best_layer, best_bn
begin

/finitiate the parameter options for the search algorithm

neurons « [25,50, 500, 1000, 2000, 5000];

layers « [5,10, 15,20, 25];

bn « [False,True] best_metric =0.0;

//start searching for the best architecture
fori — Oto5do
for j «— Oto4do
for k — Oto1do
//compute metric for current settings
metric « processDense(neuronslil,layers[j], bnlk]);

//save these settings if they perform better

if metric > best_metric then
best_neuron < neurons|i];
best_layer « layers[j];
best_bn « bnlk];
best_metric <« metric,

end

end

end
end

end

have the role of understanding and detecting the parts in the input space that are most
important for the final prediction stage and assigning higher weights for the important
parts. While in a general computer vision these mechanisms would infer the most
important parts in images or videos, the intuition in our ensembling system is that the
attention layer will create a set of weights w that will indicate the relevance of each of
the values from the inducer output vector [y; 1, i 2, ..., yi.n]. The implementation
we choose for our experiments consists of a soft attention layer inserted into the dense
architecture presented in Section 3.1, as presented in Figure 3. Using the notation in
Equation 12 that represents the network input space for a single sample i, and the
soft attention vector as attn;, with values between 0 and 1, the system will create an
appropriate attention mask aztn;, computed as the element wise product of the input
vector and the attention vector, as shown in Equation 13. The learning process for
the attention mechanism is based on a supervised back-propagation approach:

Yi = [yi,l, Vi 25 oo yz',N] 12)
attn; = attn; © y; (13)
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Fig. 3 A schematic presentation of the Attention augmented Dense networks. The attention mech-
anism, represented by an attention layer, is inserted into a Dense architecture.

3.3 Convolutional Augmented Dense Networks

Convolutional networks represented a big step forward for deep learning in the
field of computer vision, aided by the advancement of hardware processing power
and software libraries that allow such networks to be easily deployed and lower
the processing time, starting with AlexNet’s performance at the ILSVRC 2012
benchmarking competition [18]. While the shape of the input space is not important,
as one, two or three dimensional convolutional networks have been implemented,
they all rely on detecting and learning local correlations between adjacent elements
in the input space. More to the point, convolutions can be represented by a set
of filters of pre-determined shape that cover and process the entire input space.
While this approach performs well for images and videos, that intrinsically have
a spatial arrangement and correlation in the input space, in our particular case
the order of the inducer prediction outputs in the y; vectors does not have any
intrinsic spatial correlation, and, furthermore, at this stage no relationships between
individual inducers are calculated. Therefore, we must create these correlations and
relationships, via a process we call input decoration. Our assumption in this case
is that, by creating the decorated input vector for convolutional processing dc; for
each sample 7 and applying convolutional filters to this new input, we would be able
create a system where similar inducers can be arranged in close spatial proximity
and can support or revoke their prediction decisions based on their spatial relations.
Two problems must therefore be solved in order to introduce convolutions into the
ensemble networks: (i) find a criterion for detecting similarity between inducers, and
(ii) create a spatial arrangement based on the similarity.

For the first problem, similarity between individual inducers can be calculated
with the help of the official metric used for measuring system performance in the
task. While in the case of interestingness mean average precision at 10 elements is
used (mAP@10), in a generalized approach the metric can be expressed as a function
M, that takes two vectors as input (either ground truth data and prediction data or
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two prediction vectors from two separate systems), and outputs a value of similarity
between them, denoted r. In other words, given a general form for a prediction vector
pj = [y1,j,¥2.j,---»Ym,j], that represents the prediction vector created by inducer
j for all the M samples in the dataset, the similarity value between two inducers m
and n can be calculated as presented in Equation 14. Finally, by ordering the vector
of similarity scores between an inducer m and all other inducers, we can create a list
of the most similar inducers for each of the N inducers.

Tman = M(Pm> Pn) (14)

The second problem involves using the similarity values calculated at the pre-
vious step, and decorating the predictions for each sample based on the r values.
The decorated input vector for a sample i is presented in Equation 15, and is com-
posed of centroids built around the initial inducer prediction output values, denoted
s1, 82, ..., 55 . The elements in each centroid, are as follows: (i) the central element,
s j, represents the initial value, (ii) the similarity scores for the first four most similar
inducers, denoted ry j, ... 74 j, and (iii) the prediction outputs for sample i extracted
from the first four most similar inducers, denoted ¢y, ;, ... ¢4, ;. This decoration pro-
cess for a single sample i is presented in Algorithm 2, and can easily be generalized
to all the samples in the dataset.

r41 €1,1 1,1 - .- 14N C1,N F1,N
dc‘i= C4,1 S1 62,1 e C4’N SN C2’N (15)
r3,1 €3112,1..."M,N C3N 2N

[]
[]

Fekesois Dense Architecture
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Fig. 4 A schematic presentation of the Convolutional augmented Dense networks. The convolu-
tional layer, presented here with a varying number of filters, is preceded by the input decoration
stage and inserted into the dense architecture.

The decorated dc; array will represent the new input for the convolutional en-
sembling system, as presented in Figure 4. Finally, the de; array in processed by
the convolutional layers, centroid by centroid. Equation 16 shows this process for a
single centroid 7, where the centroid is element-wise multiplied with the weights in
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Algorithm 2: Input decoration algorithm for convolutional networks for
sample i.

Input  : vector of inducer predictions [p1 p> ... pn]
vector of predictions for sample i [s1 sz ... sn]
similarity (and metric) function M

Output : decorated input dc;

begin

/finitialize the d_c, vector

dc; « zeros(3x N, 3);

//lcompute the similarity between inducers
for j «— 1to N do

sim[j] « zeros(N);

for k — 1to N do

| sim[jllk] < M(pj, px)

end

/lorder the sim; vectors

sim[j] < OrderDescending(sim[j]);
end

//decorate the input
fori — 1to N do
//initialize centroid
cent; « zeros(3,3);
for j — 1to4do
//insert elements into the centroid according to their proper placement based
on the similarity measure, as presented in Equation 15
cent; « InsertElems(sim[i, j])
end

//insert the centroid in the decorated input vector
dc; « InsertCentroid(cent;)

end
end

the convolutional filter. The final step involves, in our case, an average pooling layer
that will output a single element for the convolutional step that represents the average
value of the element-wise multiplication result matrix. In a simple case where only
one convolutional filter is employed, the input to the dense layers will practically
be similar as the initial input, where each inducer output value is basically replaced
by the result of the convolution process for the inducer’s centroid. Finally, several
setups will be tested for the convolutional architecture, that include different number
of convolutional filters: 1, 5 or 10 filters. This would allow the network to assess
more than one type of correlation between the inducers.

P4 C1,i Tl Wi Wy w3
Cai Si C2i| © |wg ws we (16)
r3,i €3, i w7 wg wo
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3.4 Cross-Space-Fusion Augmented Dense Networks

With the introduction of convolutional layers in the network a method that can process
the similarities between inducers has been created. However, convolutional networks
are created with image processing as their main objective and use the same filters for
processing the entire image and therefore would, in the case of ensembling systems,
share the same weights between different centroids. While this does represent a step
forward in processing inducer correlation, our assumption is that correlation between
inducers are different for each individual inducer, and therefore weights should not
be shared between centroids. Given this assumption, we propose the creation of a
novel type of DNN layer, which we name "Cross-Space-Fusion", or CSF layer. The
implementation of the CSF layer is based on creating a new input decoration method
and the creation of the layer itself.

A few architectural decisions must be taken in order to fully exploit the correlation
data we generate and overcome the possible limitations of convolutional process-
ing. First of all, as shown in Equation 16, inducer outputs and similarity scores
are not processed together, each one of them being multiplied separately with its
corespondent convolutional weight. This may break the correlation between the two
elements and make it harder to process and learn in the neural network. Secondly,
the same possible issue would appear no matter what type of convolutional layer
we would use, as three-dimensional convolutional layers do not process correlations
inter-dimensionally. Therefore, we propose a novel input decoration method, that
would create an additional, third dimension, that would separately memorize similar
inducer outputs and similarity scores. Also the CSF layer would need to process
these details across the third dimension of the array, processing inducer outputs and
corespondent similarity scores together, while using the same M presented in Equa-
tion 14 function for calculating similarity scores. Finally, as previously mentioned,
we must take into account that regular convolutional filters may not be the optimal
for learning correlations, as they may be different from centroid to centroid. Thus
a larger number of parameters must be designed into the CSF layer and, while this
may represent a strain on the neural network, the number of added parameters is still
small, especially when compared with the depth and width of the dense architecture.

Given the particularities of this approach, Equation 17 presents the new version of
the decorated input, where C; represents the matrix of prediction outputs from the 8
most similar inducers for an inducer i, while R; represents their respective similarity
score, calculated with the help of the M function. These two matrices create the third
dimension of the decorated input, as shown in Figure 5. Similar to the convolutional
approach, in this example, the ¢ ; and r; ; pair represents the prediction output and
similarity score of the most similar system with inducer 7, ¢, ; and r; ; the second
most similar, and so on. While it is obvious that by using this decoration scheme
more similar inducers can be added to the system that in a similar convolutional
approach, the question of their utility for this task still remains and will be analyzed,
as it may be possible that the new data inserted into the system is noisy or little real
correlation exists between the systems.
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Fig. 5 A schematic presentation of the three-dimensional input decoration result. For each inducer
output s;, we create a pair of centroids C; and R;, containing the prediction outputs and similarity
scores for similar inducers, as presented in Equation 17.

Algorithm 3 presents this input decoration algorithm. It is worth to note that, in
the case of the CSF approach, the shape of the dc; decorated input array changes once
more, from (3X N, 3) in the convolutional approach to (3 X N, 3,2), doubling in size.
After the decoration step, the input is fed into the CSF layer. For each (c;, r;) group
of centroids, the network must create and learn a set of weights that can combine the
initial inducer prediction with the prediction outputs and similarity scores grouped
in the centroids. Thus, the CSF layer contains a set of @ and 8 parameters that must
be learned. Equation 18 describes the operations that are performed by the CSF
layer, where « are used for controlling the prediction output of each inducer i and g
parameters are used for controlling the prediction outputs and similarity scores for
the inducers similar to 7.

Qi -SiHPLiCLi T @i -SiHB,i-CoiT2i  @3,iSi+P3,iC3,i T3,

2 2 2
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Figure 6 presents an outline of this approach. As presented, the final step in the
CSF augmentation part of the method is represented by the addition of an average
pooling layer, thus obtaining an input of equal dimensions as the initial one for
the dense architecture. Also, given the number of inducers N, the final number of
parameters in the CSF layer is 16 X N, with 8 X N a and 8 parameters. As previously
mentioned, we must also take into account the possibility that the addition of so
many similar inducers in the centroid could add noise to the input and damage the
final result. Thus, we decide to test two different setups for the CSF architecture:
4S8, where we only populate the (¢;, ;) centroid pairs with the top-4 most similar
inducers, and 8, where the centroid pairs are completely populated with 8 inducers.
It is important to note that, while our experiments may show a preference for one of
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Algorithm 3: Input decoration algorithm for Cross-Space-Fusion networks
for sample i.

Input  : vector of inducer predictions [p1 p> ... pn]
vector of predictions for sample i [s1 sz ... sn]
similarity (and metric) function M

Output : decorated input dc;

begin

/finitialize the d_c, vector

dc; « zeros(3x N, 3,2);

//lcompute the similarity between inducers
for j «— 1to N do

sim[j] « zeros(N);

for k — 1to N do

| sim[jllk] < M(pj, px)

end

/lorder the sim; vectors

sim[j] < OrderDescending(sim[j]);
end

//decorate the input
fori — 1to N do
/finitialize centroid pair ¢;, r;
ci « zeros(3,3);
ri « zeros(3,3);
for j «— 1to4 do
//insert elements into the centroid pairs according to their proper placement
based on the similarity measure, as presented in Equation 17
(ci,ri) « InsertElems(simli, j])
end

insert the centroid in the decorated input vector
dc; « InsertCentroid(c;, r;)

end
end

the two setups, in other experiments that may use other datasets or inducers these
results may be opposed, or other setups using a different number of populated similar
inducers may produce better results.

4 Experimental Setup

This section will present the main components of the experiment and how these
components interact. We will describe the training protocol employed for the exper-
iments, the dataset and the evaluation protocol used for obtaining the results.
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Fig. 6 A schematic presentation of the Cross-Space-Fusion augmented Dense networks. The CSF
layer is preceded by the input decoration stage and inserted into the dense architecture.

4.1 Training Protocol

The common component in all the methods presented in Section 3 is represented
by the dense architecture deep neural network. Our experiments will therefore start
with finding an optimal dense architecture with regards to the depth and width of the
network and the positive or negative influence of batch normalization layers, using the
values presented in Section 3.1. This is done by collecting the prediction outputs of
the entire set of inducers and feeding them into the different variations of the dense
architecture networks. This step is described with Algorithm 1. In the following
steps, the optimal dense network is augmented with attention, convolutional and
CSF layers. As special implementations of the convolutional and CSF layers, the
input, consisting of the prediction outputs, is decorated, according to Algorithm 2
for the convolutional approach and Algorithm 3 for the CSF approach.

The training process is performed for 50 epochs, for each variation of the network,
using a batch size of 64 samples, mean squared error loss function and an Adam [45]
optimizer featuring a learning rate of 0.01. We are interested in pointing out the
optimal dense architecture, given the set of search parameters, as well as the effect of
augmenting the dense network with the three types of layers: attention, convolutional
and CSF.

4.2 Dataset

For our experiments we are using the latest version of the Interestingness10k [19]
dataset, validated and used during the MediaEval 2017 Predicting Media Interest-
ingness task [13]. The dataset is composed of 9,831 images and videos, split between
7,396 samples included in the development set (devset) and 2,435 samples in the
testing set (testset). Participants to the benchmarking competition were tasked with
developing and training their media interestingness prediction methods on the devset,
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running the systems on the testset samples and submitting their testset predictions to
the task organizers for performance calculation.

Given the high number of systems submitted at the benchmarking competition,
i.e., 33 for the image task and 42 for the video task, and the considerable amount of
research and work that went into creating them, we consider these systems as ideal
candidates for being used as inducers in our proposed method. With the help and
collaboration of the task organizers, we gathered participant submission files and
used them as input into our systems. However, given the fact that participants only
submitted predictions for the testset samples and the inherent problems in recreating
such a large number of diverse systems, we are bound to only use those predictions
and create a new evaluation protocol that will be used in training our systems, based
only on the samples that are featured in the testset.

We therefore have to create a new set of data splits, and choose to use two
protocols for this: (i) RSKF75, featuring a random stratified k-fold that uses 75%
of the samples for training and 25% for testing, and (ii) RSKF50, generating 50%
training samples and 50% testing. It is important to note that, in order to avoid any
“lucky” data splits that would create an unfair advantage for our approach, the split
samples are randomized, and experiments are repeated with different random splits,
generating 100 partitions for each network architecture variation. Therefore, the
results we present in Section 6 are average values calculated over the 100 partitions.
System performance is calculated by using the official metric of the MediaEval
benchmarking competition, i.e., MAP@10.

5 Experimental Results

This section presents the experimental results, featuring a comparison with a set of
baseline systems, a set of baseline ensembling approaches and identifying the best
performing architectures.

5.1 Baseline Systems

In order to correctly position and analyze the results of the proposed methods,
we compare them with a few methods from the literature, including (i) the best
performers at the MediaEval competition, (ii) the best overall performers on the
Interestingness 10k dataset, and (iii) a set of traditional ensembling methods.

The best performers from the MediaEval competition also represent inducers
for our systems, and an important target for the proposed systems. For the image
prediction task we have the system developed by Permadi et al. [26], witha MAP@ 10
performance of 0.1385, while for video prediction we have the system developed
by Ben-Ahmed et al. [27], with a MAP@10 performance of 0.0827. The overall
performers consist of methods that are published outside the MediaEval venue, but
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used the same benchmarking protocol and metrics. For the image task we have the
work of Parekh et al. [28], with a perfomance of MAP @10 = 0.156, while for the
video task, Wang et al. [29] achieve a MAP @10 = 0.093.

The final set of baseline systems consists of a set of traditional ensembling
methods, that we created using the same protocol and set of inducers as used by
our proposed methods. Several types of ensembling methods are tested, starting
with simple strategies [46] like taking the maximum value of inducer prediction
outputs (LFMax), average and mean values (LFAvg and LFMean), and weighted
average (LFWeight), but also more complex approaches that involve learning steps,
like AdaBoost [40] (BAda) and Gradient Boosting [41] (BGrad).

5.2 Results

The results are presented in Table 1. At a first glance, it is important to note that the
proposed systems surpasses every baseline system, including the best performing
baseline ensembling system, which for both images and videos is the AdaBoost ap-
proach. Furthermore, the best performing variant of the proposed systems increased
performance by a large margin. Taking into account the RSKF75 split, the increase
is as follows: for the image subtask an increase of 148.08% over the best MediaEval
system, 73.09% over the best overall system and 105.25% over the best traditional
ensembling system, while for the video subtask these values are 241.59%, 203.76%
and 150.22% respectively.

Table 1 Results on the two interestingness prediction tasks: image and video. Systems are divided
into baseline best performers from MediaEval and from the literature (b), best baseline ensembling
performance (e) and proposed systems (p), and according to the split the systems employ (original
or RSKF50 and RSKF75). The best results with regards to the official metric (MAP@10) are
presented in bold.

Image Video
System type| [System Split MAP@10| [System Split MAP@10
(b) Permadi et al. [26] original 0.1385 Ben-Ahmed et al. [27] original 0.0827
Parekh et al. [28] original 0.1985 Wang et al. [29] original 0.093
RSKF50 0.1523 RSKF50 0.0961
© BAda [40] RSKF75 0.1674 | [PAda 140] RSKF75 0.1129
Dense RSKF50 0.2316 Dense RSKF50 0.1563
RSKF75 0.3355 RSKF75 0.2677
Attention RSKF50 0.2399 Attention RSKF50 0.1668
© RSKF75 0.3389 RSKF75 0.2750
b Convolutional —RSKFSO 0.2293 Convolutional —RSKFSO 0.1692
RSKF75 0.3436 RSKF75 0.2799
RSKF50 0.2403 RSKF50 0.1664
CSF RSKF75 0.3403 CSF RSKF75 0.2825

With regards to the overall best performing proposed method, results vary, as the
convolutional approach has the best results on the image task using the RSKF75
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split  MAP@10 = 0.3436) and in the video task using the RSKF50 split (MAP@ 10
=0.1692), while the CSF approach has the best results using the other two variants,
obtaining a MAP@ 10 value of 0.2403 for image prediction under the RSKF50 setup
and 0.2825 for video prediction under the RSKF75 setup.

Table 2 Progressive analysis of network setup for the video task, under RSKF75 setup with batch
normalization layers activated. The left side of the table shows results when the number of neurons
increases, while the right side shows results when the number of layers increases.

Layers 5 5 5 5 5 5 5 10 15 20 25

Neurons 25 50 500 | 1,000 | 2,000 | 5,000 25 25 25 25 25
MAP@10([0.2414]0.2410{0.2493{0.2529{0.2506(0.2094 | (0.2414(0.2529{0.2650{0.2660|0.2646

It is also important to note the architecture variations that led to these results, i.e.,
the optimal dense, convolutional, and CSF architecture setups. For image prediction,
the optimal dense architecture uses 10 layers with 1,000 neurons per layer, and no
batch normalization, achieving MAP@ 10 values of 0.2316 for RSKF50 and 0.3355
for RSKF75, while the best performing convolutional architecture uses 5 filters.
Also, the best performing CSF setup in this case is 4S. For video prediction, the
optimal dense setup is composed of 25 layers with 2,000 neurons per layer and
features batch normalization, achieving MAP@ 10 values of 0.1563 for RSKF50 and
0.2677 for RSKF75. With regards to the convolutional architecture, the best setup
again features 5 convolutional filters, while 4S again represents the best setup for
the CSF layer. While the dense network performance is very good, the augmentation
process with attention and especially convolutional and CSF layers further improves
the results.

One final observation with regards to network setup is presented in Table 2.
During our experiments, we observed that there are certain points when the network
stops learning and achieves saturation. While Table 2 presents a particular setup, for
the video task with batch normalization layers and RSKF75 split, the same behaviour
is observable regardless of the task, of the presence of batch normalization layers or
of the split. In the example presented, increasing the number of neurons past 1,000
while keeping the number of layers constant at 5 only decreases the performance,
while the same is true when increasing the number of layers past 20 when maintaining
a constant number of 25 neurons per layer. Most importantly, this seems to indicate
that the optimal network setup is not outside the set of values we tested in our
experiments. Another important point to make here is that the proposed method
have a high performance even when looking at the values for the most basic setup
(5 layers, 25 neurons per layer), scoring a MAP@ 10 value of 0.2414, 9.82% lower
than the best performing dense architecture, but still significantly better than all the
selected baseline methods.
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6 Conclusions

This work presents the creation and deployment of a series of deep neural network
based ensemble systems, used in the prediction of image and video interestingness.
The latest Interestingness10k dataset is used in our experiments, a dataset that was
previously used and validated during the MediaEval 2017 Predicting Media Inter-
estingness task. Though a large number of systems use this dataset, both during the
MediaEval benchmarking competition and outside it, in different journals and con-
ferences, system performance is generally low when compared with other tasks, i.e.,
a maximum MAP@ 10 performance of 0.1985 for image interestingness prediction
and 0.093 for video prediction.

While very high, near-perfect performance is not necessarily expected for such
tasks, where annotator subjectivity plays an important role, we theorize that the im-
plementation of ensemble systems can increase overall performance. Furthermore,
the exploration of deep neural networks as ensembling functions presents a high de-
gree of novelty in the current literature, as current literature shows that they are only
employed as inducers and not as ensembling functions. Different network setups are
presented and tested, including architectures based on dense, attention, convolutional
and CSF layers, presenting the theoretical background of implementing these archi-
tectures as ensemble functions and the introduction of input decoration algorithms
that allow inducer prediction output data to be used and inducer correlations learned
with the help of these architectures.

Experimental results show a significant increase in performance over state-of-
the-art systems. Our proposed methods show a 148.08% increase in performance
in the image prediction task over the best MediaEval system and 73.09% over the
best state-of-the-art system, while in the video prediction task the increase is even
higher: 241.59% and 203.76%. Furthermore, the proposed ensemble methods are
compared with some traditional ensembling methods implemented under the same
conditions, having a significantly better performance, i.e., 105.25% for the image
task and 150.22% for the video task. While it is certainly possible that better results
could be achieved with other network setups, featuring different number of layers or
neurons, or different architectures, we believe the advantages of deep fusion systems
to be thoroughly demonstrated. Given the results, it is still unclear which of the two
inducer correlation based architectures (convolutional or CSF) perform better for
this task, with top results being split between them. However it is important to note
that inducer correlation processing did indeed improve the results of both the dense
networks and the attention-based networks, thus indicating the validity of inducer
correlation calculation, input decoration and correlation processing.

Finally, another important point, not only for our proposed methods, but for
ensembling systems in general, is the analysis of the deployability of the proposed
systems. While using a late fusion approach can be cost intensive, considering that
inducers must be trained, tested and run individually, and a final ensembling step
performed before the final prediction is provided, there are cases where developing a
late fusion system can become a necessity. Critical infrastructure applications, where
very accurate prediction results are a constant need, represent a good example, but,
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closer to the domain of interestingness prediction, applications where single-method
approaches do not perform well, due to inherent multi-modality or complexity of the
concept that is being predicted, represent another good example. While deploying
an ensembling method may prove to be more costly, it may also be one of the only
methods that achieves market-level performance, allowing the introduction of new
features that can greatly increase user satisfaction. In this case we also consider the
possibility that lowering the number of inducers may not affect system performance
to a high degree, therefore trading an insignificant amount of performance for higher
execution speed and lower hardware demands. While the creation of an inducer
selection method is still an open question for our approach, we propose that future
developments could address this problem by analyzing inducer correlations or by
testing performance in a recursive leave-one-out scenario.
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