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Abstract
The ImageCLEFfusion task addresses the challenging task of creating ensembling schemes and algorithms
for fusing a large set of inducers in two particular scenarios: a regression scenario where the ground
truth data consists of media interestingness annotations and a search result diversification scenario. We
present our team’s approach for these two scenarios, consisting of a simple statistical baseline followed
by the use of DeepFusion architectures and the way these architectures must be adapted for each scenario.
The DeepFusion methods tested for media interestingness and result diversification are represented by
deep neural networks consisting of dense, attention, convolutional, and Cross-Space-Fusion layers.
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1. Introduction

While the development of deep neural networks has greatly improved system performance
for many popular tasks, such as image recognition [1], there still are some domains where
the performances of single end-to-end systems are comparatively low. This can happen in
various domains, however, those related to the human perception of multimedia data represent
one of the areas widely known for data that is harder to classify and predict with the help
of computer vision methods. This is presented throughout the literature with examples like
media interestingness [2], violence detection [3], and emotional content classification [4]. Many
reasons are given for this trend, including the inherent subjectivity of the concepts, their
multimodality, the lack of distinctive or unique features that define and influence them, and the
complexity and novelty of these concepts.

Ensemble systems, or late fusion systems, are defined as systems where, given a set of end-
to-end systems called inducers and their decisions on the training set, an ensembling engine is
trained or programmed to join the decisions of the individual inducers in order to obtain a better
set of predictions. These systems represent one of the most important approaches for increasing
overall system performance and have been proven useful in many domains, including those
related to the human perception of multimedia data [5].
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Given these aspects, the ImageCLEFfusion 2022 task [6], which is part of the 2022 ImageCLEF
evaluation campaign [7], proposes two different tasks related to the subjective perception of
multimedia data, namely media interestingness prediction and search result diversification.
Participants are given a set of pre-defined inducers and their prediction outputs and are tasked
with developing and adapting ensembling methods that are able to more accurately predict the
ground truth for these two subjective concepts. This paper describes the methods employed by
the AI Multimedia Lab team for this task. We propose starting from a simple statistical weighted
method [8] for combining the inducer predictions and then using the more novel DeepFusion
approach [9], which has previously shown very good improvements over the performances of
the inducers included in the system.

The rest of this work is structured as follows. Section 2 presents the datasets used for the
experiments. The proposed methods are presented in Section 3, while their results on the
ImageCLEFfusion tasks are presented in Section 4. Finally, the paper closes with Section 5,
where we present the main conclusions of our experiments.

2. The ImageCLEFfusion 2022 task

ImageCLEFfusion consists of two different tasks related to the human perception of multimedia
data, namely the prediction of media interestingness and search result diversification. The
organizers provide a set of pre-defined and pre-computed inducers for these two tasks that cor-
respond to end-to-end systems used for the Interestingness10k [2] dataset during the MediaEval
2017 Predicting Media Interestingness Task1, and to the systems used for MediaEval Retrieving
Diverse Social Images task2 [10]. Table 1 shows the main statistics of the two proposed tasks.
As the table shows, a high number of inducers is available for both tasks, giving the opportunity
of testing ensembling schemes that have an integrated learning component. The performance
for interestingness prediction is validated with the MAP@10 metric, while the performance for
result diversification is validated with the F1@20 primary metric and with Cluster Recall at 20
(CR@20) as the secondary metric.

ImafeCLEFfusion-int ImageCLEFfusion-div
No inducers 29 56
Samples devset 1826 samples 104 queries
Samples testset 609 samples 35 queries
Primary metric MAP@10 F1@20
Secondary metric - CR@20

Table 1
Main statistics of the ImageCLEFfusion 2022 tasks. ImageCLEFfusion-int represents the Media Interest-
ingness task, while ImageCLEFfusion-div represents the Result Diversification task.

Given the different compositions of the inducer output files associated with these two tasks,
different input processing schemes will be employed, which will allow our proposed methods
to function and learn in an input-agnostic fashion.

1http://www.multimediaeval.org/mediaeval2017/mediainterestingness/
2http://www.multimediaeval.org/mediaeval2017/diverseimages/



3. Proposed Methods

Two methods are proposed for handling these two challenges. The first one consists of a simple
approach based on statistical weighted averages, where weights are assigned according to
the pre-computed performance of the inducers on the development set. Thus, this statistical
approach needs no training phase but only a grid-search type of approach. The second method
is represented by the DeepFusion [9] approach, where dense, attention, convolutional, and
Cross-Space-Fusion layers are employed, thus creating a set of architectures that are trained on
the development set, allowing the networks to learn the way inducers correlate and interact.

3.1. Statistical Approach

The statistical approach is based on creating a simple scheme, where weights are assigned to
each inducer based on their pre-computed performance on the development set. After finding
the optimal weights on the development set, these weights are applied to the testing set, thus
obtaining the final predicted scores. In theory, given a set of inducers 𝐼 = [𝑖1, 𝑖2, ..., 𝑖𝑛], and
their performances on the development set, arranged in descending order 𝑃 = [𝑝1, 𝑝2, ..., 𝑝𝑛],
the rank according to their performance 𝑅 = [𝑟1, 𝑟2, ..., 𝑟𝑛], a set of weights can be applied to
each inducer’s prediction 𝑊 = [𝑤1, 𝑤2, ..., 𝑤𝑛], where weight 𝑤1 is the largest, as it belongs to
the best performing inducer on the development set, 𝑤2 the second largest, as so on.

In order to calculate the weights according to the performance of the inducers we used
equation 1, where we perform a grid search for parameter 𝜖 taking the following values 0.01,
0.05, 0.1, 0.15, 0.20, 0.25. Following this step each inducer’s prediction output is multiplied by
the corresponding weight, obtaining a new set of inducers defined by equation 2. Of course,
due to the high value of the 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 parameter in some cases the worst performing inducers
may end up being neutralized and populated with zeroes. For such cases, those inducers are
neglected from the final ensembling scheme. Finally, in order to obtain the predictions on the
testing set, the weighted prediction values of the inducers that have not been zeroed by the 𝜖
parameter are averaged for each sample.

𝑤𝑛 = 1− 𝑟𝑛 · 𝜖 (1)

̂︀𝐼 = [𝑖1 · 𝑤1, 𝑖2 · 𝑤2, ..., 𝑖𝑛 · 𝑤𝑛] (2)

3.2. DeepFusion

The DeepFusion approach [9] has previously shown very good results in improving the perfor-
mance of the input inducers. We propose to adapt and test these architectures for the two given
tasks. The general setup of the architecture is presented in Figure 1, describing the four types of
layers that compose it: dense, attention, convolutional, and Cross-Space-Fusion layers. Unlike
the statistical approach, no inducers are zeroed out, and all of them are taken into account. It
thus falls into the network’s learning tasks to reduce as much as possible the inducers that
actually harm the final results. The training process uses 50 epoch for each of the four proposed
architectures.
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Figure 1: The DeepFusion architecture. We present the four main types of architectures associated
with this method, namely Dense, Attention, Convolutional and Cross-Space-Fusion.

The Dense approach show in Figure 1a consists of a series of fully connected or dense neural
network layers, with the traditional role of creating a simple MLP-like architecture that can
accurately classify the given testset samples, based on the learning process that is carried out on
the devset. We created several variants of this approach, featuring a varying number of dense
layers (namely 5, 7, 10, 12, and 15), a varying number of neurons per layer (namely 25, 50, 100,
500, 1000), and activating or deactivating the batch normalization layers for this architecture.

The Attention architecture shown in Figure 1b starts its training from the best performing
Dense architecture and augments it with soft attention layers that have the role of controlling
the inducers according to the learning that this architecture performs on the development set.
The soft attention vector takes the values 𝑎𝑡𝑡𝑛𝑖 ∈ [0, 1], thus having the option to vary the
weights corresponding to inducers but also to completely negate them.

For the following two architectures, the Convolutional and Cross-Space-Fusion, input dec-
oration schemes as presented in [11, 9] are used. These decoration schemes allow the input
to the networks to gain spatial correlations by decorating the prediction of each inducer with
predictions from correlated inducers and the correlation scores. The correlation scores between
inducers are calculated using the provided primary metrics for the two tasks.

The Convolutional architecture, shown in Figure 1c uses the two-dimensional decorated
input and applies convolutional filters to this input in order to compute and learn the way
correlated inducers may interact. The output of the convolutional filters is then pooled through
average pooling operation, thus allowing it to be sent to the Dense architecture previously
discovered. A similar operation is carried out for the Cross-Space-Fusion approach, which uses
a three-dimensional decoration scheme. This time the decorated input is fed to a series of CSF
filters, each one being different for each inducer. This allows the network to learn more than
just one type of correlation processing scheme, learning one for each inducer.



Media Interestingness Result Diversification
Run ID - int MAP@10 Run ID - div F1@20 CR@20

devset-inducer-low - 0.022 - 0.4262 0.3103
devset-inducer-avg - 0.0946 - 0.5313 0.4140
devset-inducer-high - 0.1465 - 0.6092 0.4823
Statistical 183903 0.1406 183898 0.5971 0.4622
DeepFusion-Dense 183908 0.2191 183902 0.6159 0.4862
DeepFusion-Attention 183915 0.2116 183901 0.6182 0.4879
DeepFusion-Convolutional 183917 0.2103 183900 0.6216 0.4916
DeepFusion-CSF 183921 0.2192 183899 0.6188 0.4889

Table 2
Main statistics of the results obtained on the Interestingness and Diversification tasks. The proposed
approaches are compared with the performance statistics for the development set.

3.3. Input Normalization

We quickly learned, in the training phase, that certain operations are needed for each individual
task in order to optimize the performance of the networks and help their learning process.
While for the interestingness task, this process was quite easy and only consisted of normalizing
the predictions of the inducers in a [0, 1] interval, the problem was more difficult to adapt to
the predictions of the diversification task.

Thus, a few observations have to be made about the inducer data from the diversification
task. While the data from the interestingness task has a normal spread of values, many inducers
from the diversification task start with a value of 1 for the most relevant image for a query
and decrease in an exponential manner to the end of the relevance list. We theorize that this
causes two possible problems: (i) The values at the top of the list are very high, thus making
those images hard to re-rank at lower positions in case this is needed; (ii) The images at the
middle, and of course at the end of the relevance lists have scores that are almost identical,
making them easy to re-rank during the learning process, even though this may not be needed.
We thus decided to recreate the scores associated with the relevance lists using the following
custom normalization method. Given the rank 𝑅 = [𝑟0, 𝑟1, ..., 𝑟49] = [0, 1, ..., 49] predicted by
a single inducer for a single query, we create a new set of scores and overwrite the initial scores
according to the equation:

𝑠𝑖 = 1− 𝑟𝑖 · 𝜔 (3)

In this case, we tested several values for the 𝜔 parameter, namely 0.005, 0.01, 0.05, 0.1. Given
that in some of these cases the 𝜔 parameter may cause some scores to be zeroed out or go below
zero, we neutralize those particular values. We performed a series of preliminary tests in order
to obtain the best value for this parameter, and in the end we obtained 𝜔 = 0.05.

4. Results and discussion

Results on the testing set are presented in Table 2, where they are compared with the lowest,
best and average performance of the inducers on the development set, as they are given by



the task organizers. These three inducer performances should be used as a general baseline
for comparison, as they do not reflect the actual performances on the testset. The actual
performances of the inducers on the testset are not released yet, as this data will most likely be
used in future versions of this competition.

First of all it is interesting to note that, while the statistical approach generally obtains
good results, surpassing both the lowest and the average inducer performances, it does not
surpass the best highest inducer performance. However, better performances are achieved by
the DeepFusion approaches. Thus, even the basic DeepFusion-Dense architecture outperforms
the top inducer, by a very large margin in the case of Interestingness (49.55% over the top
inducer) and by a smaller margin in the case of Diversification (1.09% over the top inducer). The
best results are achieved by two different approaches. For Interestingness, the best performing
approach uses the DeepFusion-CSF method, and attains a MAP@10 of 0.2192, representing
a 49.62% increase over the top inducer. On the other hand, the best performing approach for
Diversification is represented by the DeepFusion-Convolutional approach, with a final F1@20
score of 0.6216, representing a 2.03% increase over the top inducer, and a CR@20 score of 0.4916,
representing a 1.92% increase over the top inducer.

The clear observation from these results is the significant gap in performance gains between
the two tasks. We theorize that one of the reasons for such a gap may be represented by the
data itself. Thus, for Interestingness, the results were very low to begin with, thus making
performance gains much easier to achieve. Furthermore, there is a much larger comparative
gap between the best and lowest performing inducers in the two tasks. This may have given
the networks clearer candidates for exclusion during the learning process for Interestingness
when compared with Diversification. Also, it is worth noting that the inducer predictions had
to be adapted by using a custom input normalization scheme for the Diversification task. While
this scheme did help the networks and increased the results, significantly improved variants of
this scheme may be developed in the future.

5. Conclusions

In this study we proposed and compared a set of ensembling methods, based on simple statistical
weighted approaches and on the DeepFusion deep neural network-based fusion architecture.
These approaches are tested and validated on the ImageCLEFfusion 2022 task, featuring a task
related to Media Interestingness and one related to Result Diversification. Results on the testing
set show a major increase in performance provided by the DeepFusion architecture on the
Interestingness task, while a lower increase is provided for the Diversification task. We thus
demonstrated that the DeepFusion architectures can be successfully adapted to tasks that are
significantly different in their scope and type of approach with regards to data representation.
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